Exit time assymptotics on non-commutative 2-torus.

Biswarup Das
(Joint work with Debashish Goswami)

Statistics and Mathematics Unit
Indian Statistical Institute, Kolkata

biswarup.r@isical.ac.in

August 17, 2010



The purpose of this talk is to establish an analogue of exit time asymptotics of
Brownian motion on manifolds, in the set-up of non-commutative 2-torus.
Using these asymptotics, we will try to formulate definitions of certain
geometric invariants e.g. intrinsic dimension, mean curvature etc for the
non-commutative 2-torus.
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Exit time asymptotics of Brownian motion on manifolds:

We begin with the following well-known proposition:

Pinsky,1994

Consider a hypersurface M C R? with the Brownian motion process X.”
starting at m. Let T. =inf{t>0 :||X{" — m||=¢} be the exit time of the
motion from an extrinsic ball of radius € around m. Then we have

En(T.) =¢°/2(d — 1) +&*H?*/8(d + 1) + O(°),

where H is the mean curvature of M.
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Gray,1973

Let Vin(€) denote the volume of a ball of radius € around m € M. Let n be the
intrinsic dimension of the manifold. Then we have

ane”

Vin(e) = (1 — Kié® 4 Koe* + 0(66)) ,

m

where a,, := 2T (3)"T(4) " and K1, K> are constants depending on the
manifold.
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Let Vin(€) denote the volume of a ball of radius € around m € M. Let n be the
intrinsic dimension of the manifold. Then we have

ane”

Vin(e) = (1 — Kié® 4 Koe* + 0(66)) ,

m

where a,, := 2T (3)"T(4) " and K1, K> are constants depending on the
manifold.

The intrinsic dimension n of the hypersurface M is the unique integer n
oo if m is less than n;

satisfying lim._, ]E(Ti) = #0ifm#n;
Vm

© =0ifm>n.
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Observe that \/(:72 — (%2)" and % — (%2)n as e — 0%.

In view of this, the asymptotic expression appearing in Pinsky's result can
be recast as

S

5
n

1 V(e)n,2 H? V(e)n)% +o(V(e)

B(re) = 2(d—1)( o );+8(d+1)( o )
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In particular, we get the extrinsic dimension d and the mean curvature H
by the following formulae:

E(r.) = M9 1 o(v(9
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5
n

1 V(e)n,2 H? V(e)n
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In particular, we get the extrinsic dimension d and the mean curvature H
by the following formulae:

E(re) = )" + O(V(e)

1 ,nV(e),2
im 3 (), ®
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In particular, we get the extrinsic dimension d and the mean curvature H
by the following formulae:
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n

E(re) =
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= L tim (), 1)

) — oLV
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Formulation of quantum exit time.

- oo Suppose that M is a Riemannian manifold of Dimension n. Let B} be a
ball of radius r around x € M. Choose a coordinate neighbourhood
(Ux; x1, X2, ...xn) around x. Let W{ be a Brownian motion on M starting
at x and Tx be the exit time of the Brownian motion from the ball B;.
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Suppose that M is a Riemannian manifold of Dimension n. Let B} be a
ball of radius r around x € M. Choose a coordinate neighbourhood

(Ux; x1, X2, ...xn) around x. Let W{ be a Brownian motion on M starting
at x and Tx be the exit time of the Brownian motion from the ball B;.

X{-rB;(>r} = /\ (X{W;EB;}) )

s<t

Then we have

S where A denotes infimum.
of quantum For f € L(Uy), let

Je(F)(x,w) = xy, (W) F(WE (w)).
Note that
Je i L2(Ux) — L(Ux) @ B(T(L*(R+,C")),
since by the Wiener- [t5 isomorphism, L?(P)=(L*(R,C")), where P is
the n dimensional Wiener measure.
So one may write

X2 )= A\ 50 )0x,) = A\((evs © d) 0 (s -

s<t s<t



Thus we may view 7, as a spectral family in
L>®(U,) ® B(T(L*(R4,C™))) by the prescription:

T ([0,8)) = 1 = As<eUs(Xsy)) -
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Thus we may view 7, as a spectral family in
L>®(U,) ® B(T(L*(R4,C™))) by the prescription:

T ([0,8)) = 1 = As<eUs(Xsy)) -

Formulation
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exit time. Moreover, we have:

Blr) = [ Blrye > ) = [ (e(0) (ew 0 1) (Roseis(xsy) (O,



The exit time asymptotics of the Brownian motion amounts to studying
the behaviour of the quantity E(7,,) as r — 0.
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The exit time asymptotics of the Brownian motion amounts to studying
the behaviour of the quantity E(7,,) as r — 0.

Alternatively:
Choose a sequence (xp), € M and positive numbers €, such that x, — x

£ (+) for each

and €, — 0. Now for large n, X{w:"esig}(') = X(wgesr

s > 0. Thus,
Blr) = [ (€(0) Al @ id) (Rosiisn,y)) V(O = By ).

i.e. the asymptotic behaviour of IE(TBX,,

) and E(ngn) will be the same.



Note that the points of M are in 1 — 1 correspondence with the pure
states of L°°(M) and {P, = xgx }s is a family of projections on L**(M),
so that we have:
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Note that the points of M are in 1 — 1 correspondence with the pure
states of L°°(M) and {P, = xgx }s is a family of projections on L**(M),
so that we have:

evy,(Pn) = 1,

evi, 2 evy;

vol(P,) — 0.

We now move into non-commutative setup.
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of quantum Let (™A¢)e>0 be an increasing family of von-Neumann algebras (called a
filtration). A quantum random time or stop time adapted to the filtration
(A¢)e=0 is an increasing family of projections (E;)¢>0, Eo = I such that E; is a
projection in 2; and E; < E; whenever 0 < s < t < 4o00.




There are several formulations of the concept of quantum stop time due
to
Attal,Sinha(1998), Parthasarathy,Sinha(1987), Barnett,Wilde(1991).

The one most suitable for us is:

Barnett,Wilde, 1991
Formulation

of quantum Let (™A¢)e>0 be an increasing family of von-Neumann algebras (called a
filtration). A quantum random time or stop time adapted to the filtration
(A¢)e=0 is an increasing family of projections (E;)¢>0, Eo = I such that E; is a
projection in 2; and E; < E; whenever 0 < s < t < 4o00.

Observe that by our definition, 7,, ([0, t)) is adapted to the filtration
(Qlt)tzo, where '

Ae := L=(Ux) ® B(Tyg) (T :=T (L*([0,t],C")) ), for

TB,X([O, t]) €A ®1r,.
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Suppose that we are given an E-H flow j; : A — A” ® B(F(L*(R+, ko)),
where A is a C* or von-Neumann algebra. For a projection P € A, the

family {1 — As<¢ (js(P))}t>0 defines a quantum random time adapted to
the filtration (A” ® B(I'y))

Formulation
of quantum
exit time.

t>0"

We refer to the quantum random time {1 — \., js(P)}t>0 as the ‘exit time
from the projection P.
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Let 7 be a state (to be thought of as non-commutative volume form on a

B.Das * . .
C* or von Neumann algebra), and assume that we are given a family
{Ps}n>1 of projections in A, and a family {w,},>1 of pure states of A
such that

®m wp is weak* convergent to a pure state w,
m wy(Pn) =1 for all n,
m v, =7(Pp) — 0as n— oo.

Formulation

Definition
of quantum

e Let ~y, := [ dt(e(0), (wn ® id) o A _,js(Pn)e(0)). We say that there is an
exit time asymptotic for the family {P,;w,} of intrinsic dimension no if

oo if m is just less than ng
lim LZZ #0ifm#n
n—oo ;
Vn =0ifm>n

and
2 4 2k 2k+1

'Yn:Clvn% + CoV® kv +O(v,,T) as n — oo. 3)



It is not at all clear whether such an asymptotic exists in general, and
even if it exists, whether it is independent of the choice of the family
{Pn;wn}. If it is the case, one may legitimately think of c1, 2, ...ck... as
geometric invariants and imitating the classical formulae as discussed
before, the extrinsic dimension d and the mean curvature H of the

o GrEnGT non-commutative manifold may be defined to be
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It is not at all clear whether such an asymptotic exists in general, and
even if it exists, whether it is independent of the choice of the family
{Pn;wn}. If it is the case, one may legitimately think of c1, 2, ...ck... as
geometric invariants and imitating the classical formulae as discussed
before, the extrinsic dimension d and the mean curvature H of the

o GrEnGT non-commutative manifold may be defined to be

exit time.

1 no nl
d:= 2C1(Oén0) " +L )

Formulation

H? = 8(d+1)<:2(0‘n—:)°)%. (5)
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Exit time asymptotics on the non-commutative 2-torus

Fix an irrational number 0 € [0, 1].

The non-commutative 2-torus C*(T%) is the universal C*-algebra generated
by a pair of unitaries U, V which satisfy:

UV = e vu.

It can also be viewed as the “Rieffel deformation” of the commutative
C*-algebra C(T?).
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Exit time asymptotics on the non-commutative 2-torus

A class of projections on C*(T%), as given by Rieffel, is:

Choose an € << @ and let P = f_ (U)V™! + £, (U) + f,(U)V, where
fi.fy € C(T2)7 ffl(t) = fi(t+ 9)3

et ifo<t<e

1ife<t<®

€O +e—t)ifO<t<O+e

0if+e<t<l1

(1) = L(t)—fK(t)?2ifFo<t<O+e¢
T 0 if otherwise.

fo(t) =
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m Let tr be the canonical trace in C*(T%), given by
tr(>,, , amnU™ V™) = ago. This trace will be taken as an analogue of the

volume form in C*(T?).

= Throughout the section, we will assume C*(T3) C B(L?(tr)), and let
W*(T5) == (C*(T5))".

m For (x,y) € T? let ., denote the canonical action of T? on C*(T3)
given by o, (3=, ,amnUTV") =37 x"y"amUTV". Note that the
automorphism « is tr-preserving. Hence it extends to a unitary operator
on L%(tr), say U(x,y), and o = ad u, which implies that « is normal.



Exit time asymptotics on the non-commutative 2-torus

m Let tr be the canonical trace in C*(T%), given by
tr(>,, , amnU™ V™) = ago. This trace will be taken as an analogue of the

volume form in C*(T?).
= Throughout the section, we will assume C*(T3) C B(L?(tr)), and let
*( 2) o (C*(TZ))//
m For (x,y) € T? let ., denote the canonical action of T? on C*(T3)
given by o, (Z amnUmV") = > mn X"y "amn U™ V. Note that the
automorphism « is tr-preservmg. Hence it extends to a unitary operator

A case on L3(tr), say u(x,,), and @ = ad u, which implies that « is normal.
study:Exit

time m On C*(Tf;), there are two conditional expectations denoted by ¢1, ¢,
asymptotics . .

on the non- which are defined as:

commutative
2-torus

1

()= [y (A )= [0, (A

From the normality of «, it follows easily that ¢1, ¢» are normal maps.
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m Let tr be the canonical trace in C*(T%), given by
tr(>,, , amnU™ V™) = ago. This trace will be taken as an analogue of the

volume form in C*(T?).
= Throughout the section, we will assume C*(T3) C B(L?(tr)), and let
*( 2) o (C*(TZ))//
m For (x,y) € T? let ., denote the canonical action of T? on C*(T3)
given by o, (Z amnUmV") = > mn X"y "amn U™ V. Note that the
automorphism « is tr-preservmg. Hence it extends to a unitary operator

A case on L3(tr), say u(x,,), and @ = ad u, which implies that « is normal.
study:Exit

time m On C*(Tf;), there are two conditional expectations denoted by ¢1, ¢,
asymptotics . .

on the non- which are defined as:

commutative
2-torus

1

()= [y (A )= [0, (A

From the normality of «, it follows easily that ¢1, ¢» are normal maps.

m For a projection P, let A 1(P) := Qi ezm(P)‘



A case
study:Exit
time
asymptotics
on the non-
commutative
2-torus

Exit time asymptotics for

non-commutative 2-torus




A case
study:Exit
time
asymptotics
on the non-
commutative
2-torus

Exit time asymptotics for non-commutative 2-torus

Let P=f_(U)V~' + £,(U) + £,(U)V be a projection such that fy, fi satisfy
the condtions described before. Consider the projections A, .(P), A, ., (P)
such that |s — s'| < . Then

(A P) A (A, (P)) = xs(V),

for the set S = X1 N Xa N X3 N X4, where
X = To({xIA(x) = 0}), X := 7 ({xIfi(x) = O}),
Xz .= 7—s({x|fo(x) = 1}) and Xs := 7_o ({x|fo(x) = 1}).
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Exit time asymptotics for non-commutative 2-torus

Let P=f_(U)V~' + £,(U) + £,(U)V be a projection such that fy, fi satisfy
the condtions described before. Consider the projections A, .(P), A, ., (P)
such that |s — s'| < . Then

(A P) A (A, (P)) = xs(V),

for the set S = X1 N Xa N X3 N X4, where
X = To({xIA(x) = 0}), X := 7 ({xIfi(x) = O}),
Xz .= 7—s({x|fo(x) = 1}) and Xs := 7_o ({x|fo(x) = 1}).

It is worthwhile to note that the conclusion of the above theorem holds if
we replace U by U, V by V¥ and 6 by {k6} ({-} denoting the fractional
part).



Exit time asymptotics for non-commutative 2-torus

Let P, = fUn)(Ukn) 4 £k (Ukn) 4 £k (Uk) U*»| be projections such that

{kn0} — 0. Put € := {kge}.
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Exit time asymptotics for non-commutative 2-torus

Let P, = fUn)(Ukn) 4 £k (Ukn) 4 £k (Uk) U*»| be projections such that

{kof} — 0. Put ¢ := ta?},

Consider a standard Brownian motion in R?, given by (Wt(l), Wt(Q)).
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Let P, = fUn)(Ukn) 4 £k (Ukn) 4 £k (Uk) U*»| be projections such that
{kn0} — 0. Put € : {k"e}

Consider a standard Brownian motion in R?, given by (Wt(l), Wt(Q)).
Define j, - W*(T3) — W*(Tz) ® B(I(L*(R4,C?))) by

Ji() = a
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Let P, = fUn)(Ukn) 4 £k (Ukn) 4 £k (Uk) U*»| be projections such that
{kn0} — 0. Put € : {k"e}

Consider a standard Brownian motion in R?, given by (Wt(l), Wt(Q)).
Define j, - W*(T3) — W*(Tz) ® B(I(L*(R4,C?))) by

Jie()=a

Note that j. defined above is the standard Brownian motion on C*(T3).

@D 2eiw®)
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We have:

Almost surely, \ ., (js(Pn)(w)) € W*(U), for all n, i.e.

N\ G:(Pa)) € W*(U) ® B(T(L*(R+,C?)),

s<t

for each n.

Outline of the proof:

In the strong operator topology,

N Gs(Po)) = lim Ajg, (Pa) Az (Pa)}- (6)

0<s<t
Now almost surely a Brownian path restricted to [0, t] is uniformly continuous,
so that the for sufficiently large m, and for almost all w, |Wi,7;") = W((,.lJr)l)t| can
2m

be made small, uniformly for all i such that i = 0,1,..2™. So
/\"{jz'i(P") A jirne (Pn)} € W*(U) by Theorem 3.2. It can be shown that the
m 27,77

set of projections of this type is closed in the WOT-topology. Hence proved.
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Note that W*(U) is isomorphic with L*°(T).

Consider the pure states {ev, o Ei, evy 0 E2|x,z € T} on W*(T3), which
2 30}
are also normal. Let z, = e * . Consider the sequence of pure states

@z, := €evy, o E;.
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Note that W*(U) is isomorphic with L*°(T).
Consider the pure states {ev, o Ei, evy 0 E2|x,z € T} on W*(T3), which
are also normal. Let z, = ehi%. Consider the sequence of pure states
@z, := €evy, o E;.
Consider

(€(0), (¢, @ 1) 0\ (js(Pn))e(0)).

0<s<t
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Note that W*(U) is isomorphic with L*°(T).

Consider the pure states {ev, o Ei, evy 0 E2|x,z € T} on W*(T3), which
2300}
4

are also normal. Let z, = e . Consider the sequence of pure states
@z, := €evy, o E;.

Consider

(€(0), (¢, @ 1) 0\ (js(Pn))e(0)).

0<s<t

A direct computation shows that this is equal to

case /| (1)
byt P{e*™ €B,0<s<t}= B{r > t},

. M {kng}]
time 4 i 4
asymptotics

on the non- i

T where B := {627”)( X € [7_{2"6} ) LZG}]}-

2-torus
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Note that W*(U) is isomorphic with L*°(T).

Consider the pure states {ev, o Ei, evy 0 E2|x,z € T} on W*(T3), which
27,,3{‘079}
are also normal. Let z, = e . Consider the sequence of pure states

@z, := €evy, o E;.

Consider

(e(0), (¢z, ® 1) o N\ (js(Pa))e(0)).

0<s<t

A direct computation shows that this is equal to

A case 27.”'Ws(1)
e " Ple €B, 0<s <t} =PAr iy gy, > th
asymptotics 4 4
on the non- .
commutative where B := {62"’X - xE [#7 {kze}]}.
2-torus

So we have a family of (7,), random times defined by

T"([t’ +OO)) = /\ (Js(Pn))
0<s<t
so that fo 0), (¢z, ® 1) 0 Ay (is(Pn))e(0))dt can be taken as the

expectation of the random time 7,.
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Note that here the analogue for balls of decreasing volume is (Pn)n, such
that tr(P,) = {k.0} — 0, tr being the canonical trace in W*(T3).
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Note that here the analogue for balls of decreasing volume is (Pn)n, such
that tr(P,) = {k.0} — 0, tr being the canonical trace in W*(T3).

Now, by the Pinsky's result, we have

/Ot<()(¢2n®1 A G(Pr))e(0)dt

0<s<t

:E(Tﬂ M) .
=zt (L)« Jont (U57) o (s (157
= {k;f}2 + {;"24 + O({ka0}°),

since the mean curvature of the circle viewed inside R? is 1.
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In view of the above equations, we see that
the ‘intrinsic dimension’ ng = 1,
the ‘extrinsic diimension’ d = 5,

‘ v . 1
and the ‘'mean curvature’ is 33
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In view of the above equations, we see that
the ‘intrinsic dimension’ ng = 1,
the ‘extrinsic diimension’ d = 5,

‘ I 1
and the ‘mean curvature’ is PR

All these give a good justification for developing a general theory of
quantum stochastic geometry.



THANK

A case
study:Exit
time
asymptotics
on the non-
commutative
2-torus



THANK
You!l!

A case
study:Exit
time
asymptotics
on the non-
commutative
2-torus



A case
study:Exit
time
asymptotics
on the non-
commutative
2-torus

Exit time asymptotics on the non-commutative 2-torus

Let X={Aec W*T3)| A= f1()V 1+ H(U)+ A(U)V, fi,fh
L=(T), f-a(t) == A(t + 6)}.
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Let X ={Ac W*(T3)| A= f1(U)V 1+ HU)+ A(U)V, fi,f €
L=(T), fa(t) == At +0)}

The subspace X is closed in the ultraweak topology.
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Letff{AE W*(T3)| A= f1(U)V '+ K(U) + A(U)V, A, f €
L=(T), fa(t) == At +0)}

The subspace X is closed in the ultraweak topology.

Proof.

Let Ag := 8 (U)V_1 + 1"('6 (U) + f )(U)V be a convergent net in the
ultraweak topology. Now ¢1(Ag) = fo(ﬁ)( ), $1(AgV) = fif)(U) and
¢1(Ag = f(ﬂ)( U) Since ¢1 is a normal map, which implies that

B (), fP(U) and FP(U) (all of which are elements of L°°(T)) are
uItraweakIy convergent, to fo(U), A(U), f—1(U) (say), and clearly
f_1(t) = A(t+0). |
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Lemma

Suppose fi, foy are as defined before and A € X. Define

As,t = f_l(e27ris U) V—le—27rft + fb(e27ris U) + fl(e27ﬂ's U) VeZTrit.

Suppose s, s’ € [0,1) be such that |s —s'| < & where 0 < € < 0, and
|supp(f1)| < €, where |C| denotes the Lebesgue measure of a Borel subset
C g R. Then A57t 0 Aslytl € X.
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Lemma

Suppose fi, foy are as defined before and A € X. Define
As,t = f_l(e27ris U)V—le—27rft + fb(e27ris U) 4+ fl(e27rfs U) Ve27'rit.

Suppose s, s’ € [0,1) be such that |s —s'| < & where 0 < € < 0, and
|supp(f1)| < €, where |C| denotes the Lebesgue measure of a Borel subset
C CR. Then As: - Ag v € X.

Proof.

It suffices to show that the coefficient of V2 in As,t - Ag p is zero. By a direct
computation, the coefficient of V2 is g(/) := fi(s + I)(s + | — 0)e™(t+t).
But [(s+/)—(s"+/—6)| =0 +s—s'| > e Now by hypothesis, we have
|supp(f)| < €, so that fi(s+ /) - fi(s" +/ — 6) = 0 and hence the lemma is
proved. |
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Lemma

Suppose A= f_1(U)V ™ + f(U) + Ai(U)V and f()fi(l +6) = 0, for
1 €[0,1). Then A*" € X, for n € N.



A case
study:Exit
time
asymptotics
on the non-
commutative
2-torus

Exit time asymptotics on non-commutative 2-torus

Lemma

Suppose A= f_1(U)V ™ + f(U) + Ai(U)V and f()fi(l +6) = 0, for
1 €[0,1). Then A*" € X, for n € N.



A case
study:Exit
time
asymptotics
on the non-
commutative
2-torus

Exit time asymptotics on non-commutative 2-torus

Lemma

Suppose A= f_1(U)V ™ + f(U) + Ai(U)V and f()fi(l +6) = 0, for
1 €[0,1). Then A*" € X, for n € N.

The coefficient of V2 in A% is fi(/)fi(/ + 6) for | € [0,1) and this is zero by the
hypoethesis. Hence A2 € X. The coefficient of V in A? is

fl(z)(l) := f (fo + 7,(f)) , where 7, is left translation by 6. We have
fl(z)(l)fl(z)(l + 0) = 0, so that applying the same argument as before, we
conclude that A* € X. Proceeding like this we get the required result. |
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Using the above three lemmas and von-Neumann's formula for minimum
of two projections, we have

Lemma

Suppose P = f_1(U)V ™" + fo(U) + Ai(U)V, such that P> = P and
jsupp(f)| < e. Then (A,.(P) A (A, (P)) € X for|s — 5| < 5.
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Using the above three lemmas and von-Neumann's formula for minimum
of two projections, we have

Lemma

Suppose P = f_1(U)V ™" + fo(U) + Ai(U)V, such that P> = P and
jsupp(f)| < e. Then (A,.(P) A (A, (P)) € X for|s — 5| < 5.
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Lemma

Let P=f_1(U)V '+ (V) + A(U)V and
A= AUV £AWU) + FD(U)V be projections, (f-1,f, fi) and
(FW £ £A) satisfying the conditions described before. Then A < A_ (P)

and A < As,)t, (P) if and only if the following hold:
For | € [0,1),
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Let P=f_1(U)V '+ (V) + A(U)V and

A= AUV £AWU) + FD(U)V be projections, (f-1,f, fi) and

(FW £ £A) satisfying the conditions described before. Then A < A_ (P)
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fi(s + NFEA (U —0) = 0;
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Lemma

Let P=f_1(U)V '+ (V) + A(U)V and
A= AUV £AWU) + FD(U)V be projections, (f-1,f, fi) and
(FW £ £A) satisfying the conditions described before. Then A < A_ (P)
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Lemma

Let P=f_1(U)V '+ (V) + A(U)V and
A= AUV £AWU) + FD(U)V be projections, (f-1,f, fi) and
(FW £ £A) satisfying the conditions described before. Then A < A_ (P)
and A< A, ,(P) if and only if the following hold:
For I € [0,1),
fi(s + NFEA (U —0) = 0;
Fa(s+NFP0+0)=0;
fo(s+DED (N +A(s+D D (1-0)e2 e+ 1 (s+NED (140)e =2t = £ (1);
fi(s + DA (1 = )€ + fi(s + NEA (1) = £ ()




A case
study:Exit
time
asymptotics
on the non-
commutative
2-torus

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let P=f_1(U)V '+ (V) + A(U)V and

A= AUV £AWU) + FD(U)V be projections, (f-1,f, fi) and

(FW £ £A) satisfying the conditions described before. Then A < A_ (P)
and A< A, ,(P) if and only if the following hold:

For I € [0,1),

fi(s + NFEA (U —0) = 0;

Fa(s+NFP0+0)=0;

fo(s+DED (N +A(s+D D (1-0)e2 e+ 1 (s+NED (140)e =2t = £ (1);
fi(s + NEA (1 = 0)e2™ + fo(s + NED (1) = £ ();

Fa(s + NEAD I+ 0)e=2mit 1 fo(s + D (1) = FD);

ogoENE



A case
study:Exit
time
asymptotics
on the non-
commutative
2-torus

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let P=f_1(U)V '+ (V) + A(U)V and

A= AUV £AWU) + FD(U)V be projections, (f-1,f, fi) and

(FW £ £A) satisfying the conditions described before. Then A < A_ (P)
and A< A, ,(P) if and only if the following hold:

For I € [0,1),

fi(s + NFEA (U —0) = 0;

Fa(s+NFP0+0)=0;

fo(s+DED (N +A(s+D D (1-0)e2 e+ 1 (s+NED (140)e =2t = £ (1);
fi(s + NEA (1 = 0)e2™ + fo(s + NED (1) = £ ();

Fa(s + NEAD I+ 0)e=2mit 1 fo(s + D (1) = FD);

A(s' + NAED (I —6) = 0;

(|
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Lemma

Let P=f_1(U)V '+ (V) + A(U)V and

A= AUV £AWU) + FD(U)V be projections, (f-1,f, fi) and

(FW £ £A) satisfying the conditions described before. Then A < A_ (P)
and A< A, ,(P) if and only if the following hold:

For | € [0,1),

fA(s+ NENU—0) =0;

Fa(s+NFP0+0)=0;

fo(s+DED (N +A(s+D D (1-0)e2 e+ 1 (s+NED (140)e =2t = £ (1);
fi(s + NEA (1 = 8)eit + fi(s + NED (1) = £,

Fa(s + NEAD I+ 0)e=2mit 1 fo(s + D (1) = FD);

Ai(s' + DAY (1 - 6) = 0;

Fa(s' +NFDU+0)=0;

ogoENE
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Lemma

Let P=f1(U)V ™' + f(U) + ﬁ(u)v and

A=rf" (U)V_1 + FA(U) + FA(U)V be projections, (f-1, fo, fi) and

(r* (‘1‘ , f0 , £W) satisfying the conditions described before. Then A < A, (P)
and A < As, . (P) if and only if the following hold:

For I € [0,1),

fA(s+ NENU—0) =0;

fa(s+NFDU+0)=0;
fo(5+/)fo(A)(/)Jrﬁ(5+/)ffﬁ‘)(/—9)ez’”*+f—1($+/)ﬂ(A)(/+9)6‘2”” =A);
(s + N (1= 0)e2™ + (s + BIA (= ("’( I

Fa(s + NEAD I+ 0)e=2mit 1 fo(s + D (1) = FD);

f(s' + DAY (- 0) = 0;

Fa(s +NFP(1+0) =0

fo(s" + NED () + (s’ + NFD (1= 0)e2™ (s + 1) ED (1 +0)e=27t =
20

ogoENE

ool ~ o
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(s + N o= méﬁ+@@+0#Am (“U

Fa(s + NEAD I+ 0)e=2mit 1 fo(s + D (1) = FD);

f(s' + DAY (- 0) = 0;

Fa(s +NFP(1+0) =0

fo(s" + NED () + (s’ + NFD (1= 0)e2™ (s + 1) ED (1 +0)e=27t =
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EIE
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Lemma

Let P = f_1(U)V ™+ f(U) + fi(U)V such that P is a projection and
suppose fo(t) = 0 for some t. Then fi(t) = f(t +6) = 0.
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